
Week 4 - Wednesday

 What did we talk about last time?
 Looping over strings
 Cryptography
 Transposition cipher
 Shift cipher
 ord() and chr() functions

 We can convert a string with a single character in it into the
integer that represents it with the ord() function

 If you know the numerical value of a character, you can
convert that number back into a string using the chr()
function

number = ord('a') # number contains 97

letter = chr(100) # letter contains 'd'

 A shift cipher encrypts a message by shifting all of the letters
down in the alphabet

 Using the Latin alphabet, there are 26 (well, 25) possible shift
ciphers

 We can model a shift cipher by thinking of the letters A, B, C,
… Z as 0, 1, 2, … 25

 Then, we let the key k be the shift
 For a given letter with value x:

encrypt (x) = (x + k) mod 26

 E("KILL EDWARD") = "NLOO HGZDUG"
 What is E("I DRINK YOUR MILKSHAKE")?
 What is D("EUHDNLWGRZQ")?
 This code was actually used by Julius Caesar who used it to

send messages to his generals

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

 Algorithm:
 Loop over all characters
▪ Convert character to ASCII value
▪ Convert ASCII value to a value from 0-25 by subtracting the value of 'A'
▪ Add the key to the result
▪ Compute the result modulus 26 (which makes numbers bigger than 25 wrap around)
▪ Add back the value of 'A' to turn a value from 0-25 back into an ASCII value
▪ Turn the ASCII value back into a character and concatenate it onto the ciphertext

 Return the ciphertext

def shiftEncrypt(plaintext, key):

 Reversing the process to decrypt the ciphertext is simple
 All we need to do is "encrypt" the ciphertext with the negation

of the key we used to encrypt
 For example, if we encrypted with a key of 7, we can decrypt

by encrypting with a key of -7
 Our decrypt function should simply call the encrypt function

with a negative key

def shiftDecrypt(ciphertext, key):

 Our implementation expects all input characters to be from
'A' up to 'Z'

 That's why subtracting ord('A') will make the values be
between 0 and 25

 Inputting strings that contain characters other than uppercase
letters (e.g. digits, lowercase letters, punctuation) will cause
strange results

 Substitution ciphers cover a wide range of possible ciphers,
including the shift cipher

 In a substitution cipher, each element of the plaintext is
substituted for some corresponding element of the ciphertext

 Monoalphabetic substitution ciphers always use the same
substitutions for a letter (or given sequence of letters)

 Polyalphabetic substitution ciphers use different
substitutions throughout the encryption process

 We can map to a random permutation of letters
 For example:

 E("MATH IS GREAT") = "UIYP TQ ABZIY"
 26! possible permutations
 Hard to check every one

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

I N O V Z H A P T R G E U F D W S B Q Y L K M J C X

 Using the same mapping, perform the following encryption:

 E("HELP ME") =

 Perform the following decryption:

 D("VD CDL QZZ YPZ HFDBV") =

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

I N O V Z H A P T R G E U F D W S B Q Y L K M J C X

 Algorithm:
 Loop over all characters
▪ Convert character to ASCII value
▪ Convert ASCII value to a value from 0-25 by subtracting the value of 'A'
▪ Use this value as an index into the scrambled key alphabet
▪ Concatenate the character at this location onto the ciphertext

 Return the ciphertext

def substitutionEncrypt(plaintext, key):

 Our version of the substitution cipher is different from the
book's

 We only use uppercase letters
 We don't have a space
 We don't have to use the find() function
 But it's a good idea to learn about find() on your own

 One of the annoying things about using a substitution cipher
is that you have to come up with a permutation (a scrambling)
of the alphabet

 But Python can help us do that!

 First, we need a function that:
 Takes a string and an index
 Returns a new string with that index removed
 In other words, we return the string with all the characters before the

index concatenated to all the characters after the index
 We can do that in a single line of Python

def removeChar(string, index):

 Algorithm:
 Create a string that holds all the characters of the alphabet
 Loop as many times as the length of the alphabet:
▪ Pick a random integer between 0 and the remaining length of the alphabet
▪ Put the character at that location at the end of the key we're making
▪ Use removeChar() to remove the character at that location from the alphabet

 Return the key

def makeKey():

 Vigenère cipher
 Work time for Assignment 3

 Read Section 3.7 of the textbook
 Work on Assignment 3

	COMP 1800
	Last time
	Questions?
	Review of ord() and chr()
	Shift Cipher
	Definition
	Example: Caesar Cipher
	Shift encryption in Python
	Shift decryption in Python
	Quick note
	Substitution Ciphers
	Substitution ciphers
	Example: Simple Monoalphabetic Substitution Cipher
	Example continued
	Substitution encryption in Python
	Quick note
	Making a key
	A useful function
	Making a key
	Quiz
	Upcoming
	Next time…
	Reminders

